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Scattering process between one-dimensional traveling breathers(TBs), i.e., oscillatory traveling pulses, for
the complex Ginzburg-Landau equation(CGLE) with external forcing and a three-component activator-
substrate-inhibitor model are studied. The input-output relation depends in general on the phase of two TBs at
collision point, which makes a contrast to the case for the steady traveling pulses. A hidden unstable solution
called the scattor plays a crucial role to understand the scattering dynamics. Stable and unstable manifolds of
the scattor direct the traffic flows of the scattering process. A transition point of the input-output relation in a
parameter space such as from preservation to annihilation corresponds to when the orbit crosses the stable
manifold of the scattor. The phase dependency of input-output relation comes from the fact that the profiles at
collision point make a loop parametrized by the phase and it traverses the stable manifold of the scattor. A
global bifurcation viewpoint is quite useful not only to understand how TBs emerge but also to detect scattors.
It turns out that the scattor for the CGLE(respectively the three-component system) becomes an unstable
time-periodic(respectively stationary) solution.
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I. INTRODUCTION

Spatially localized moving objects such as pulses and
spots form a representative class of dynamic patterns in dis-
sipative systems. A qualitative change for the pattern may
occur either by interaction with other patterns through colli-
sion or due to intrinsic instabilities such as splitting and de-
struction by itself[1–5]. There is a variety of collision pro-
cess for particlelike patterns in dissipative systems even
restricted to head-on ones[6–14]. A key issue is to classify
the input-output relation before and after collision and clarify
its underlying mechanism for the scattering process. One of
the difficulties comes from the large deformation due to
strong interaction. A new viewpoint was presented to clarify
the process of head-on collisions among traveling pulses and
spots[15,16]: especially a notion of “scattor” was introduced
to understand the input-output relation. The scattor itself is
just an unstable steady or time-periodic solution(i.e., saddle)
and its center of mass does not move, however once there
occurs collision, the solution deforms significantly and ap-
proaches a part of the unstable manifold of the scattor and is
driven by it. The final output is therefore determined by the
destination of the unstable manifold. Scattors are in general
highly unstable and a variety of outputs originates from those
of destinations of unstable manifolds. In Ref.[15] we used
the terminology “separator” instead of scattor, however scat-
tor may be appropriate especially for higher codimension
case[16].

The issue is reduced, to some extent, to finding the scat-
tors and their dynamic behaviors along unstable manifolds,
however it is in general difficult to detect a scattor even by
numerics, since it is not an attractor. To overcome this diffi-
culty, the following observation turns out to be quite useful
[15,16]: when parameters are close to a transition point
where input-output relation changes qualitatively, the orbit
becomes very close to the scattor by adjusting an appropriate
number of parameters. Once a scattor is obtained at some
particular point, then it can be continuated to other parameter
regions by using, for instance,AUTO software[17]. The aim
of this paper is to study the scattering process for the
oscillatory-propagating pulses for the complex Ginzburg-
Landau equation(1) with a parametric forcing term[18–21]
and the three-component activator-substrate-inhibitor model
(3). Since such pulses vary time periodically, the input-
output relation in general depends on the phase at collision,
which makes a sharp contrast with the nonoscillatory case. It
turns out that the scattor for the Complex Ginzburg-Landau
equation(CGLE) (respectively the three-component system)
becomes an unstable time-periodic(respectively stationary)
solution. Our goal is to show the existence of such scattors
numerically and clarify the phase dependency of the input-
output relation. In what follows we use the terminology
“traveling breather”(or TB in short) for the oscillatory-
propagating pulse.

Our first model system is the following CGLE with a
parametric forcing term[18–21]:

Wt = s1 + ic0dW+ s1 + ic1dWxx − s1 + ic2duWu2W+ c3W̄,

s1d

wherec0,c1,c2, andc3 are real parameters. The last complex
conjugate term represents an external forcing with almost
double the natural frequency andc2−c0 stands for the fre-
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quency misfit. Equation(1) becomes bistable in an appropri-
ate parameter region where there exists a pair of stable ho-
mogeneous statesW0 and −W0. When c3 is large, the
stationary front connectingW0 to −W0 is stable. Note that the
magnitude of 1−uWu2 (or the modulusuWu) is localized in
space, so we call it a pulse rather than a front(or domain
wall) in the sequel. It was shown by Coulletet al. [19] that
Eq. (1) undergoes a supercritical drift bifurcation of the sta-
tionary pulse asc3 is decreased, i.e., Ising-Bloch bifurcation
with other parameters being fixed asc0=0.10,c1=−0.10, and
c2=0.15. Since it is supercritical, the velocity of bifurcating
steady traveling pulse is small near the onset and the two
pulses repel each other, therefore the input-output relation
becomes preservation. In a slightly different parameter set-
ting such asc0=−0.15,c1=−0.10, andc2=0.10, Ohtaet al.
[20] found a transition from preservation to annihilation asc3
is decreased. This transition can be understood in such a way
[16] that the orbit crosses the stable manifold of the scattor
of codim 1 at the transition point and the orbits are sorted out
according to which side of the stable manifold it belongs.
Scattors are in general highly unstable[15,16], and hence not
visible just by solving the evolutions, however, as will be
shown below, they can be detected in a systematic way by
usingAUTO. The local dynamics around the scattor and glo-
bal behaviors of their unstable manifolds are the keys to link
input to output during the scattering process. Moreover such
a saddle is not necessarily a steady state, in fact we will see
in the sequel that an unstable time-periodic solution plays a
role of scattor for TB. In order to have a TB, we employ here
a particular set of parametersc0=1.0,c1=−0.5,c2=1.1 and
takec3 as a bifurcation parameter in the bistable regime. It is
easy to see ±W0= ±1 for this setting. The Neumann bound-
ary condition(zero flux) is imposed and we set toDx=0.5
and Dt=10−3 and the system size is 64. There exist other
parameter regions in which traveling breathers are observed,
for instance, Mizuguchi and Sasa[21] employedc0=1.0,c1
=−0.5,c2=1.0 and found a variety of instabilities by com-
puter simulations, however TBs in this regime always anni-
hilate at collision and no transition occurs for the input-
output relation. In this paper we investigate the input-output
relation of the symmetric head-on collisions for Eq.(1),
which is equivalent to considering the collision process with
the Neumann wall(see Fig. 1), and reveal the nature of
quasi-time-periodic solution as depicted in Fig. 2.

II. ONSET OF TRAVELING BREATHERS
AND BIFURCATIONAL ORIGIN OF SCATTORS

As a route to TB from a stationary pattern, two subse-
quent bifurcations occur, i.e., Hopf and drift bifurcations. For
largerc3<0.30, it is easy to obtain a stable stationary pulse
as in Fig. 3(A)(a). Whenc3 is decreased, a Hopf bifurcation
first occurs at 0.230[see Fig. 3(B)] and the stationary pulse
starts to oscillate back and forth, but the center of mass does
not move. Slightly away from the Hopf bifurcation point, the
oscillations become strongly anharmonic and zigzag shaped.
As c3 is decreased further to 0.148, its center of mass starts
to drift as in Fig. 1(A), which indicates the onset of TB. The
drift velocity of TB is slow near the onset, since the bifurca-

tion from the standing oscillating pulse to the TB is super-
critical as Fig. 1(A). The TB bounces off at the wall, there-
fore the input-output relation is preservation, namely an
incoming TB emits an outgoing TB. Whenc3 is decreased to
0.140, the velocity of TB becomes larger, and it annihilates
at the collision to the Neumann wall as in Fig. 1(B)(b). It is
clear that transition of input-output relation must occur in
between 0.140 and 0.148. To detect a scattor near the transi-
tion point, orbital behaviors are traced carefully by changing
c3 with keeping the initial condition being fixed. We employ
a well-settled TB as an initial data for numerics. Here the
“well-settled TB” means that it is obtained after a long-run
simulation on a large interval. This makes sense because the
concerning TB is asymptotically stable. It turns out that the
orbit stays very close to a quasi-time-periodic state for cer-
tain time whenc3<0.142 429 as indicated in Fig. 2. A re-
markable thing happens as shown in Fig. 1(B)(c), namely the

FIG. 1. (A) Long-time average of the propagating velocity as a
function of c3. (B) Transition from reflection to annihilation occurs
at c3<0.142 429 asc3 is decreased[(a) preservation(reflection)
when c3=0.144, (b) annihilation when c3=0.140, and (c) c3

<0.142 429]. The other parameters are set toc0=1.0,c1=−0.5, and
c2=1.1. Here we draw the space-time plot ofuWu2.
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TB is reflected at the first collision, while the annihilation
occurs at the second collision despitec3 being fixed as
<0.142 429. This not only makes a sharp contrast with the
steady TB case[15,16], but also implies that the bifurcation
parameterc3 is not sufficient to determine the input-output
relation. Such a phase-dependent output occurs over a range
of c3 including 0.141–0.143 and the quasi-time-periodic ob-
jects such as Fig. 2 are observed for certain time right after
collisions. It indicates the existence of ac3-parameter family
of unstable time-periodic solutions called scattors and those
objects play a role of separatrix and should be responsible for
the transition of input-output relations for our system.

Although scattors may be obtained approximately by tun-
ing the parameterc3, this approach has several drawbacks,
for instance, it only works near the transition point of codim
1, and it does not give a precise profile to study the linearized
spectrum around it. In what follows we present a more sys-
tematic and powerful method to detect scattors based on a
global bifurcation viewpoint and clarify the origin of phase-
dependent output. To control the phase at collision, we
change the distance between the initial pulse and boundary,
since it is equivalent to shifting the phase of the initial oscil-
latory pulse.

First we find stationary solutions for larger values ofc3.
Figure 3(A) shows relevant unstable and stable steady solu-
tions confirmed numerically forc3=0.30 with the aid of the
Newton method. Once the stationary solution has been de-
tected, we compute the branches globally by continuation
usingAUTO. Following the branch of the stable steady pulses
SSP(respectively unstable one denoted by USP), there oc-
curs a saddle-node(SN) bifurcation atc3<0.228 59(respec-
tively 0.223 75) as in Fig. 4(a). The profile of the unstable

eigenfunction associated with USP denoted byF is shown in
Fig. 3(A)(c). Note that a Hopf bifurcation occurs supercriti-
cally on SSP(respectively USP) near the SN point atc3
=0.230 75(respectively 0.224 31) shown as circles in Fig.
4(a). This is the onset of the stable(respectively unstable)
standing breather SOP(stable oscillating pulse) [respectively
unstable oscillating pulse(UOP)]. The USP has only one real
positive eigenvalue even on a whole interval and the associ-
ated one-dimensional unstable manifold is connected to the
SOP and the homogeneous trivial state, respectively. In fact,
taking c3=0.227 in between the above two Hopf bifurcation
points, and adding a small perturbation proportional toF, the
output, depending on its sign of the perturbation, is either
like Fig. 3(C)(a), i.e., changes into a SOP, or like Fig.
3(C)(b), i.e., a homogeneous state. Actually, besides the USP
and SSP branches, there exists another unstable solution
branch, however it does not play an important role here, so
not shown in these figures. The two Hopf branches SOP and
UOP are extended to the range ofc3 in which numerical
simulations of Figs. 1 and 2 are carried out. The Neimark-

FIG. 2. Magnified figures of transition from reflection(a) to
annihilation(b) at c3<0.142 429, asc3 is slightly decreased.(c) A
quasi-time-periodic pulse observed at the transition point. FIG. 3. (A)(a) Stable steady pulse(SSP) whenc3=0.30;(b) the

unstable steady pulse(USP) has only one(real) unstable eigenvalue
s<0.183 14d and the associated eigenfunctionF (respectively its
adjointF*) whenc3<0.224 31 is depicted in(c) [respectively(d)].
The solid, gray, and broken lines indicate the amplitudeuWu2, imagi-
nary, and real parts, respectively.(B) Bifurcation diagram in the
neighborhood of the Hopf bifurcation points.L2 stands for the in-
tegral norm of the square ofu. The black(respectively gray) line
indicates the branch continued from USP(respectively SSP) of
(A)(b) [respectively(a)] and black open(respectively gray filled)
circles represent the unstable oscillating pulse(UOP) [respectively
stable oscillating pulse(SOP)]. (C)(a) [respectively(b)] Response
of USP by adding a small positive(respectively negative) constant-
multiple perturbation in the directionF whenc3=0.227.
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Sacker (NS) bifurcation takes place on the stable Hopf
branch SOP atc3<0.148 022, namely, a pair of multiplier
m1,2=0.955±0.297i crosses the unit circle as depicted in Fig.
4(c). The Floquet multipliersm can be used for the criterion
of the stability of a periodic orbit. The SOP becomes un-
stable and the stable oscillatory-propagating pulse, i.e., TB,
takes over instead. Thec3 value of the NS point is in good
agreement with that of the onset of TB in Fig. 1(A). TBs
originate from the NS point of the SOP and we can observe
a scattering among them forc3,0.148 022. On the other
hand, the UOP is a hyperbolic saddle of codim 1, so that it
has only one real unstable multiplierm.1. It turns out that
the quasi-time-periodic behaviors such as Fig. 2(c) are real-
ized by the UOP. In other words the UOPs are the time-
periodic scattors and their unstable manifolds are connected
to TBs and the homogeneous state as in Fig. 5.

III. PHASE-DEPENDENT OUTPUTS
FROM THE BREATHING SCATTOR

Now we are ready to explain why we have different out-
puts depending on the phase of collision as in Fig. 1(B)(c).

We look at the responses of the scattor by perturbing it along
the unstable direction whenc3<0.142 429. To detect the un-
stable direction theoretically, we have to solve the mono-
dromy operator associated with the linearized operator
around the scattor; however, this is not an easy task numeri-
cally. We therefore add a small perturbation to each of
frames of the periodic orbit in the fixed directionF instead,
which is generically transversal to the stable manifold of
breathing scattor(BS). One period is discretized into 80
frames here. In views of Figs. 5(c)–5(e), the destinations of
the unstable manifold are homogeneous state(annihilation),
if the perturbation is added to a quarter of the period of the
scattor betweenT/4 andT/2. Otherwise they are outgoing
pulses(preservation).

More quantitatively we can distinguish the behaviors of
orbits by calculating the distance between the orbit and the
scattor, and its projection along the unstable direction defined
as Eq.(2) whereF* is the adjoint function ofF [see Fig.
3(A)(d)]:

FIG. 4. (a) Global bifurcational origin of the time-periodic scat-
tor. The bifurcation parameter isc3. The black open(respectively
gray filled) circles indicate the unstable oscillating pulse(UOP)
[respectively stable(SOP)] connected to USP(respectively SSP).
TB emerges belowc3<0.148. The solid line at the top of the figure
indicates the stable uniform state.(b) A detail near the NS bifurca-
tion point. (c) The distribution of multipliersm of SOP at c3

<0.148 022. The gray circle showsumu=1.

FIG. 5. (a) Spatiotemporal pattern of the scattor with the period
T<12.8730 atc3<0.142 429.(b) Phase portraits of the scattor: The
solid (respectively gray) line indicates the interface whent=3T/8
(respectivelyt=5T/8). (c) [respectively(d)] Response of the scattor
by adding a small constant-multiple perturbation ofF to the snap-
shot of the unstable orbit att=3T/8 (respectivelyt=5T/8). (e)
Phase-dependent response of the scattor.
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distance = min
d
E

0

T

uWstd − WBSst + ddu2dt,

inner product =
1

T
E

0

T

kWstd − WBSst + dd,F*ldt. s2d

Figure 6 shows how those quantities evolve with respect to

FIG. 6. Time evolutions of the inner product and distance to the
scattor. (a) The inner product changes the sign from positive to
negative whenc3 is decreased(solid black for c3=0.142 42 and
solid gray forc3=0.142 44). The associated broken curves represent
the distance to the scattor.(b) For an appropriatec3, the response
depends on the phase of the initial breather as in Fig. 7. The inner
product and associated distance are shown for two typical initial
conditions(black and gray) with c3=0.142 44. Solid(respectively
broken) curves indicate inner product(respectively distance to the
scattor).

FIG. 7. Schematic picture of the relation for the plot of the
profiles of the orbits right after collisions and the stable manifold of
the time-periodic scattor of codim 1. The rectangle shows a
Poincaré section of the scattor. The solid circle indicates the plot of
profiles of the orbit as the collision-phase varies from 0 to 2p. It
crosses the stable manifold of the scattor transversally asc3 passes
the transition point. Generically there is a nonempty interval ofc3 in
which the circle belongs to both sides of the stable manifold of the
scattor, which explains the outputs of Fig. 1(B)(c).

FIG. 8. Phase diagram in(rc3104, Dv3105) space starting
from a single pulse. SRP: self-replicating pattern. STP: stable trav-
eling pulse. For parameters in SRP, each pulse undergoes
backfiring.

FIG. 9. Symmetric head-on collisions for the three-component
system(3) (i.e., hitting the boundary with the Neumann condition).
(a) Annihilation Dv=2.6310−5, rc=7.52310−4. (b) Preservation
Dv=3.2310−5, rc=9.72310−4. (c) The output changes depending
on the phase at collision: the first one is of preservation and the
second one is of annihilation.Dv=3.19310−5, rc=9.60310−4

Only u component is displayed here.
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time: The sign of the inner product is changed near the mini-
mum distance point before and after the transition pointc3
<0.142 429, which implies the switching of the orbital be-
havior from one side to the other. If we plot the profiles of
the orbit right after collision in the appropriate phase near the
scattor, then it becomes a closed curve as the phase at colli-
sion varies from 0 to 2p, moreover the closed curve generi-
cally crosses the stable manifold of USP transversally asc3
varies as shown in Fig. 7. The output after collision is there-
fore determined by looking at on which side of the stable
manifold the closed curve belongs. In view of Fig. 7, it is
clear that two different types of outputs come out depending
on the phase. Accordingly, the coexistence of the annihilation
and preservation for the fixedc3 value as shown in Fig.
1(B)(c) is caused by the difference of phase at collision.

IV. SCATTORS FOR THE
ACTIVATOR-SUBSTRATE-INHIBITOR SYSTEM

The scattor for the CGLE(1) turns out to be time periodic
as was discussed in previous sections, however this is not
always the case. In fact the following three-component sys-
tem(3) has a TB in an appropriate parameter regime(Fig. 8):

ut = Duuxx +
su2v

ssb + scwds1 + sau
2d

− rau,

vt = Dvvxx + bb −
su2v

ssb + scwds1 + sau
2d

− rbv,

wt = rcsu − wd. s3d

This model can be regarded as a 333 system by adding the
effect of the inhibitorw to the 232 activator-substrate sys-
tem such as the Gray-Scott model. For more details, see for
instance Meinhardt[22]. We adopt two parametersDv andrc
as bifurcation parameters. Note that steady states do not de-
pend onrc. Other parameters are fixed asDu=1.0310−5,ra
=0.082,rb=0.0123,bb=0.1, sa=1.11, sb=1.55, sc=1.115,s
=0.08. For numerical computation, we set toDx=0.004 and
Dt=0.1 unless otherwise said. Figure 9 shows three typical
behaviors at symmetric collisions in TB regime of Fig. 8.
Preservation(respectively annihilation) occurs in the right-
upper (respectively left-lower) region of TB regime. In

FIG. 10. The outputs depend on the phase at collision. The
difference between(a) and(b) is the phase at collision. The phase is
controlled by tuning the distance of initial position to the boundary.
The orbits stay close to the scattor for certain time in both cases:(a)
preservation,(b) annihilation. The output depends on the system
size l1 and l2 where l1<4.77 andl2 is slightly larger thanl1. The
number of spatial grids is 1.03103.

FIG. 11. (A)(a) The profile of the scattor of static type. The
scattor is of codim 2. Note that the profile ofw is exactly the same
as that ofu. The number of spatial grids is 1.03103. (b),(c) The
unstable eigenfunctionsf1 andf2 are depicted. The associated ei-
genvalues are 0.046 360 78 and 0.014 041 54.(d)–(f) The magni-
fied pictures of central parts of(a)–(c), respectively. The solid, gray,
and dotted lines indicateu, v, andw components, respectively.(B)
left (right) Outputs from the scattor. A small positive(negative)
perturbation off1 is added to the scattor.

TERAMOTO, UEDA, AND NISHIURA PHYSICAL REVIEW E69, 056224(2004)

056224-6



between those regimes, preservation and annihilation occur
simultaneously as in Fig. 9(c) depending on the collision-
phase similar to Fig. 1(B)(c). Taking a closer look at two
collisions of Fig. 9(c), we see that the orbits become very
close to a quasi-steady-state for certain time before preserva-
tion or annihilation as depicted in Fig. 10; in fact an unstable
steady state can be found by the Newton method and it has
two unstable eigenvalues as shown in Fig. 11(A) besides the
translation zero eigenvalue. This steady state is deserved to
be called a scattor, because it emits exactly the same outputs
as observed in Fig. 10(see Fig. 11) when it is perturbed
along the first (symmetric) unstable direction[see Fig.
11(B)]. Note that Fig. 12 shows that the scattorS depends
smoothly onDv in a wider interval. It should be remarked
that the scattor for Eq.(3) is not time periodic. The mecha-
nism proposed for the CGLE remains valid without alter-
ation; in particular, phase-dependent output originates from
the intersecting manner between the stable manifold of the
scattor and the loop structure of the profiles at collision.

V. CONCLUSION

Scattering phenomena of oscillatory-propagating pulses
(TBs) are studied for the CGLE(1) and the three-component
reaction diffusion system(3). The transition of input-output
relation such as from annihilation to preservation can be ex-
plained from the scattor’s viewpoint. The scattor for the
CGLE (1) takes a form of unstable time-periodic solution,
however this is not always the case for the three-component
system(3) as shown in the preceding section. The solution
profile right after collision is a function of the collision
phase, and it makes a closed loop generically. This loop in-
tersects transversally with the stable manifold of the scattor
near the transition point of input-output relation, which
causes the phase-dependent output. Such scattors can be
found systematically by adopting a global bifurcation view-
point with the aid of the path-tracking software such as
AUTO. The origin of a diversity of input-output relations can
be reduced to the local dynamics around scattors, in fact,
when the orbit approaches a scattor right after collision, then
it is sorted out along one of the unstable directions of it.

Here we focused on the symmetric head-on collision, i.e.,
hitting the boundary with Neumann condition. A collision
process and the associated scattor correspond to the in-phase
oscillations on a whole line. For asymmetric collisions,
namely, the phases of two colliding TBs are different, the
outputs become more complicated and the response of scat-
tor for the asymmetric perturbations must be considered,
which is a part of the ongoing project. Overall the response
of scattors plays a pivotal role to understand the transient
aspect of scattering dynamics in dissipative systems.
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